An analogue of continued fractions in number theory for Nevanlinna theory

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Analogue of Continued Fractions in Number Theory for Nevanlinna Theory

We show an analogue of continued fractions in approximation to irrational numbers by rationals for Nevanlinna theory. The analogue is a sequence of points in the complex plane which approaches a given finite set of points and at a given rate in the sense of Nevanlinna theory. 0. Introduction Since P. Vojta [17] created a dictionary between Nevanlinna theory and Diophantine approximation theory,...

متن کامل

Metrical Theory for Optimal Continued Fractions

where Ed= fl, bkEZ2,, k 2 1, and with some constraints on bk and sk. Usually we will assume that x is irrational, and thus that the expansion (1.1) is infinite. A special case of an SRCF is the regular continuedfraction, RCF, which is obtained by taking ck = 1 for every k in (1.1). The aim in introducing the OCF was to optimize two things simultaneously. In the first place one wishes the conver...

متن کامل

Metrical Theory for Farey Continued Fractions

By making fundamental use of the Farey shift map and employing infinite (but σ-finite) measures together with the Chacon-Ornstein ergodic theorem it is possible to find new metrical results for continued fractions. Moreover this offers a unified approach to several existing theorems. The application of ergodic theory to the study of continued fractions began with the Gauss transformation, G: [0...

متن کامل

Ergodic Theory of Simple Continued Fractions

Every irrational number x ∈ R\Q has a unique representation of the form x = a 0 + 1 a 1 + 1 a 2 + 1 a 3 +...

متن کامل

On the Extremal Theory of Continued Fractions

Letting x = [a1(x), a2(x), . . .] denote the continued fraction expansion of an irrational number x ∈ (0, 1), Khinchin proved that Sn(x) = ∑n k=1 ak(x) ∼ 1 log 2 n logn in measure, but not for almost every x. Diamond and Vaaler showed that removing the largest term from Sn(x), the previous asymptotics will hold almost everywhere, showing the crucial influence of the extreme terms of Sn(x) on th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2004

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-04-03709-2